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Liquid vs. gaseous xenon: electron recoils

[1]. A. Bolotnikov and B. Ramsey, Nucl. Instr. Meth. A 396, 360 (1997).

- Better intrinsic energy resolution
  F ~ 0.15 in gas vs. F ~ 20 in liquid,
  where (∆E/E)2 = F(W/E), and W is
  the energy to produce an electron-
  ion pair

- Attributed to large fluctuations 
  between recombination and
  scintillation in liquid phase [1]

- Room temperature operation
Energy resolution in gaseous xenon with
varying density; from [1].

● The gas phase offers:
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- Near-1% FWHM
  Resolution [1] at
  662 keV with tight
  fiducial cut
- Extrapolate to
  Q

ββ
= 2458.7 keV [2]:

  ~0.52% FWHM

1.05% FWHM
 = 662.7 ± 0.2 keV

 = 2.972 ± 0.172 keV

● Electron recoils: energy resolution

[1] NEXT Collaboration.  Nucl. Instrum. Meth. A 708, 101 (2013).
[2] McCowan and Barber.  Phys. Rev. C 82, 024603 (2010).  

Liquid vs. gaseous xenon: electron recoils
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137Cs track reconstructed with SiPMs in NEXT-
DEMO prototype in Valencia, Spain

● Electron recoils: tracking

Liquid vs. gaseous xenon: electron recoils
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- gas phase offers good energy resolution using just the 
  ionization signal
- 0.5% energy resolution at Q

ββ
 (EL noiseless gain – 

  maybe also save for after prototype discussion) with 
  topological rejection scheme (tracking)
- opportunity for dark matter searches: low fluctuations 
  gives better resolution in the ratio of ionization to 
  scintillation (S2/S1); better electron/nuclear recoil
  discrimination

● Perspective:

Liquid vs. gaseous xenon: electron recoils

We now understand performance of pure 
xenon for detection of electron recoils: We 
wish to investigate response of gas phase 
xenon to nuclear recoils
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Electroluminescence

Drift

ELPMT Array

● An electroluminescent TPC:
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Electroluminescence

- Incident particle deposits energy, producing
  ionization (S2) and scintillation (S1)
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Electroluminescence

- Electrons drift in an electric field to a narrow 
  region of high field

Ed E EL
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Electroluminescence

Ed E EL

- xenon medium scintillates as the electrons
  traverse the EL gap; electrons gain enough
  energy to excite but not ionize xenon atoms
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 A typical event

S1 S2
(drift)

Electroluminescence
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Wavelength Shifting:

● TPB (tetraphenyl butadiene)-coated 3M reflective films
- Placed surrounding drift region and just behind EL region
- Wavelength shift ~170 nm xenon light to ~ 430 nm
- Factor of ~3 better light collection efficiency 

TPB-coated filmTPB coated film 
inset
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The NEXT-DBDM prototype:

19-PMT 
array

5 mm 
EL gap

13 cm drift 
region

10L stainless 
steel vessel
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The NEXT-DBDM prototype:

[1] NEXT Collaboration.  Nucl. Instrum. Meth. A 708, 101 (2013).

- NEXT-DBDM: NEXT Double-Beta Dark Matter
- Focus on energy resolution and tracking [1], and now
  detection of nuclear recoils

G
rid

P
M

T
 A

rray 

● A prototype for NEXT [1]:
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Experimental setup:

- ~14 bar xenon gas recirculating through hot getter
- coincident with approx. 65% of neutron emissions
- use a NaI scintillating crystal + PMT to detect 

NaI scintillator Neutron source 238Pu/Be

Lead block (2” thick)
TPC

Scintillator

Source

Lead

TPC

● Tag 4.4 MeV rays to identify neutron-induced events:
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238Plutonium-beryllium (, n) neutron source:

[1] See e.g. K. Geiger and L. V. D. Zwan, Nucl. Instr. Meth. 131, 315 (1975).
[2] T. Murata et al., JENDL (α,n) Reaction Data File 2005.  http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html.
[3] NIST, ASTAR: stopping power and range tables for helium http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.  

α+
9 Be→12 C(* )

+n

Source spectrum 
calculated [1-3] for a 
uniform Pu/Be mix.  The 
12C* spectrum is 
observed, and the decay 
of the excited C nucleus 
yields a 4.4 MeV 
gamma. 

http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
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Nuclear recoils in Xe:

- maximum recoil for neutron energy E [1] is: E
max

 ~ (4/A)E 

● Neutrons create low-energy recoils:

[1] G. F. Knoll.  Radiation Detection and Measurement, 3rd ed. (Wiley, Hoboken, NJ, 2000).

E
max

 ~180 keV for 

~6 MeV neutron 
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Nuclear recoils in Xe:

Rate is much lower for higher-energy (relatively easier to 
detect) neutrons
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Analysis: waveforms

- Single gaussian-like pulses; width is dependent on drift time
- Triggered on S1/NaI (4.4 MeV) coincidence, and S2 NIM-based trigger; 
  waveforms read out using a Struck digitizer

● Candidate neutron events (experiment):
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Analysis: diffusion

● Diffusion cuts isolate events with correctly chosen S1:

- Single-pulse events in “diffusion band” are those for which S1 
  was properly identified
- Diffusion consistent with ~ 0.5 mm/cm1/2
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Analysis: S1 vs. S2

● Nuclear and electron recoils separable at high energies:

- Monte Carlo quenching set to 1/2.14 for S1, 1/6.15 for S2;
  constant in energy (not the case in liquid xenon)
- More low-energy gamma background present in data
- Energy resolution in data unexpectedly poor, perhaps due to TPB
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Analysis: S1/S2

● Clear separation between neutrons and gammas:
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Analysis: S1/S2

● Clear separation between neutrons and gammas:

Nuclear recoils

Electron recoils (mostly x-rays)
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Analysis: S2/S1

● Clear separation between neutrons and gammas:
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Analysis: S2/S1

● Clear separation between neutrons and gammas:

Nuclear recoils

Electron recoils (mostly x-rays)
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Conclusions - nuclear recoils in xenon gas:

● Gas provides reasonable electron/nuclear recoil 
discrimination
- S2/S1 significantly different for two types of events 
- exact yields and their energy dependencies still unknown

● Better understanding of experimental setup and 
hardware trigger is required:
- Factor of ~15 difference in calculated and expected source 
  rate based on event rate computed from Monte Carlo
- Apparent reduction in rate at lower drift fields
- Degradation in energy resolution since the time of the 
  electron recoil studies (possibly due to use of TPB)
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Ton scale + directionality:

- WIMPs in a dark matter “halo” would cause nuclear
  recoils with a preferred direction [1]
- Recombination signal in gas may provide the information
  necessary to determine nuclear recoil direction relative to
  an external field (idea of Dave Nygren)

E

More columnar 
recombination

Less columnar 
recombination

E

[1] Ahlen et. al. arXiv:0911.0323. 

● Columnar recombination and track orientation:

From [1]
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Simultaneous 0νββ and dark matter search:

● Large gaseous xenon detector:

- Similar detection strategies and requirements for both searches

Combines:
  good energy resolution
  tracking
() electron/nuclear recoil discrimination
(?) nuclear recoil directionality

See posters by Carlos Oliveira and Dave Nygren
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Additional Slides
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Nuclear recoils: Monte Carlo (GEANT)

- Contains steel vessel,
  drift and EL regions,
  PMTs, lead block, and
  NaI crystal
- W = 21.9 eV,
  W

sc
 = 100 eV,

  EL gain and PMT QE 
  matched to give approx.
  correct S1 and S2 yields
- Nuclear recoils modeled 
  as “generic ions” in
  GEANT
  S1

NR
/S1

γ
 = 1/2.14

  S2
NR

/S2
γ
 = 1/6.15

Neutron spectrum input 
from calculation 
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The NEXT experiment:

[1]. NEXT Collaboration. Conceptual Design Report. arXiv 1106.3630.

- up to 150 kg of Xe, enriched to isotope 136Xe
- 1.36 m diameter, 2.28 m long cylindrical main vessel
- ~7000 SiPM-tracking plane; 60 3-in. PMT energy plane
- electroluminescent gain
- expected resolution near 0.5% FWHM at Q

ββ

Funding secured 
from the ERC 

this year

● A 0νββ experiment in Canfranc, Spain [1]
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Liquid vs. gaseous xenon: nuclear recoils

[1]. Szydagis et al., NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon, 2011 JINST 6 P10002. (arxiv:1106.1613)

- Same energy dependence
  and magnitude in gas?

Relative scintillation efficiency in liquid
xenon; from NEST [1].

NEST:

● S1 and S2 yields for recoils in gas are unknown:
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Molecular additives:

● Could provide several advantages:

- Penning effect: conversion of
  excitation into ionization, 
  eliminates primary S1
- cooling of electrons potentially
  increases columnar 
  recombination; improved
  directionality signal

See poster by Carlos Oliveira

E
ion

E
exc

E
ion

E
exc

Primary Gas Additive

E
vib0

Penning transfer

E
ne

rg
y



09/11/2013 Josh Renner, TAUP 2013 34

Liquid vs. gaseous xenon: nuclear recoils

● Measurements taken at TAMU (J. White):

- Small 7-PMT test cell, 
  20 bar Xe gas
- Electron/nuclear recoil 
  discrimination
- Monoenergetic neutrons

Nuclear recoils

Electron recoils

[1]. J. White.  PPC 2008: 2nd International Workshop on Interconnection Between Particle Physics and Cosmology.

From [1]
- Gas phase requires further study
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238Plutonium-beryllium (, n) neutron source:

[1] See e.g. K. Geiger and L. V. D. Zwan, Nucl. Instr. Meth. 131, 315 (1975).
[2] T. Murata et al., JENDL (α,n) Reaction Data File 2005.  http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html.
[3] NIST, ASTAR: stopping power and range tables for helium http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.  

α+
9 Be→12 C(* )

+n

N (En ; Eα ,i)=∫0

E
α , i

dEα

4 π[d σ (Eα ; En)/dΩ]

dEα /(ρdx)[En(0)−En(π)]

Source spectrum 
calculated [1] for a 
uniform Pu/Be mix from 
JENDL [2] (, n) cross 
sections and angular 
distributions, and dE/dx 
in 9Be from NIST ASTAR 
[3].  The 12C* spectrum 
is observed, and the 
decay of the excited C 
nucleus yields a 4.4 
MeV gamma. 

http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
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The NEXT-DBDM prototype:

● Simulation: electron recoils in pure HPXe, F = 0.15, 10% 
optical efficiency: by Justo Martin-Albo, IFIC, Valencia

S2 = ionization signal   = Q
S1 = scintillation signal = L

Nuclear recoils here?
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The NEXT-DBDM prototype:

 A typical event

S1 S2
(drift)
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Neutron vs. electron recoils:

Studies in liquid Xe; gas Xe should be similar
- S2/S1 nuclear recoil discrimination 
- use neutrons to produce nuclear recoils for calibration 

[1] E. Aprile et. al.  Phys. Rev. Lett. 97, 081302 (2006)

From: E. Aprile et. al.  PRL 97, 081302 (2006)

Example: XENON prototype [1]

5 Ci Am/Be neutron source

- 5 pe/keVee (1 pe/keVr) S1
- 8.4 pe/electron S2
- >~7.5% light collection efficiency

We attempt similar 
measurements in ~14 bar 
gaseous xenon
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Preliminary detection of nuclear recoils:

Example of a candidate neutron event:

Time (10 ns samples)

S1

S2

A
D

C
 C

o
u

n
ts

* Thanks to Yasuhiro Nakajima for reducing our electronic noise significantly 

- nuclear recoil produces a short track
- single, Gaussian-shaped pulse
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Preliminary detection of nuclear recoils:

Electron-positron annihilation radiation
- Coincidence between collinear 511 keV gamma rays
- Same trigger conditions as neutron run (except NaI 
scintillator region of interest)

NaI scintillator

22Na source

TPC

Scintillator
Source

TPC
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Preliminary detection of nuclear recoils:

S2/S1 recoil identification: γ vs. neutron sources 

Neutron source Gamma source
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Preliminary detection of nuclear recoils:

[1] E. Aprile et. al.  Phys. Rev. Lett. 97, 081302 (2006)

Neutron source Gamma source

Nuclear recoils

X-rays Higher-energy γ's
(inelastic scatters) Higher-energy γ's

X-rays

Noise S1s with high-energy γ's  
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Preliminary detection of nuclear recoils:

S2/S1 recoil identification (~14 bar gaseous Xe)
Xenon x-rays Higher-energy s

Nuclear recoils
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Preliminary detection of nuclear recoils:

● How TPB helped

~ 662 keV gammas; 
~ 800 average S1 photons
~ 1.2 photons/keVee

Before After

~ 511 keV gammas; 
~ 200 average S1 photons
~ 0.4 photons/keVee

* Approx. factor of 3 improvement in light yield
(Note: drift fields were not matched)
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Preliminary detection of nuclear recoils:

 Energy spectrum for 137Cs source:

- Peaks integrated
  and identified as
  S1 or S2
- S2 proportional
  to energy of event
- No corrections on
  physics applied

x-rays ~30 keV

Compton scattering

full-energy peak
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Preliminary detection of nuclear recoils:

[1] E. Aprile et. al.  Phys. Rev. Lett. 97, 081302 (2006)

 Position-dependence

- Events located
  radially outward
  from central point
  register lower in E
- Correct with radial
  cut (r*) for now
- Better tracking will
  improve correction
  capabilities

r*
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